15 research outputs found

    Spinal Extradural Arachnoid Cyst: Significance of Intrathecal Infusion after Fistula Closure

    Get PDF
    The spinal extradural arachnoid cyst is a rare entity. Obtaining the correct diagnosis and detecting the fistula location are critical for providing effective treatment. A 41-year-old man had numbness in the soles of his feet for 2 years with accompanying gait disturbance, and a defecation disorder. Computed tomography myelography performed at another hospital revealed an epidural arachnoid cyst from Th11 to L2. He received a subarachnoid-cyst shunt at the rostral part of the cyst. However, his symptoms worsened and he was admitted to our hospital. Neuroradiological investigations revealed the correct location of the fistula at the level of Th12. We performed partial removal of the cyst wall with fistula closure via right hemilaminectomy of Th11 and 12. The complete closure of the fistula was confirmed by intrathecal infusion of artificial cerebrospinal fluid through the shunt tube. The shunt tube was removed with the sutures. The patient’s symptoms improved, although numbness remained in his bilateral heels. There has been no recurrence in 15 months since the surgery. Fistula closure may work as a balanced therapeutic strategy for spinal extradural arachnoid cyst, and intrathecal cerebrospinal fluid infusion is useful for the confirmation of complete fistula closure

    Surgery in the Standing Position by a Surgeon with Achilles Tendon Rupture

    Get PDF
    Unexpected injuries can have a profound effect on a surgeonʼs performance and thus on patients and surgical departments. Here we describe a technique for performing surgery in the standing position, as done by a surgeon with an Achilles tendon rupture. During his prescribed 45-day non-weight-bearing period for the left ankle after surgery for an Achilles tendon rupture, the surgeon was able to participate in 15 surgeries as an operator or assistant, due to his use of a combination of injured-leg genuflection on a stool and a ʻSurgical Body Supportʼ device. Similarly injured surgeons may benefit from such support

    Adhesion Strength of Amorphous Carbon Films Deposited on a Trench Sidewall

    No full text
    Hydrogenated amorphous carbon (a-C:H) films were deposited on the sidewall of 3-mm-wide stainless steel or Si trench, and the adhesion strength of the films was evaluated using a micro-scratch tester. Particularly, the effects of carbon ion implantation and Si-containing interlayer (a-SiCx:H) as the pretreatments on the adhesion strength of the a-C:H films prepared on the trench sidewall were investigated. It was found that both carbon ion implantation and interlayer improved the adhesion strength of the a-C:H films deposited on the trench sidewalls. In addition, the carbon ion implantation dominated the adhesion strength of the a-C:H films for the Si substrates, and the interlayer for the stainless steel substrates. In the case of the stainless steel substrates, the carbon was accumulated on the surface of the trench sidewall instead of implantation, whereas the carbon ions were implanted to the Si substrates on the trench sidewall to form a mixing layer. The a-SiCx:H interlayer forms Fe–Si bonds between the stainless steel substrate and the interlayer, which is thought to improve the adhesion strength. It was also found that there is a negative correlation between the trench depth and the adhesion strength regardless of the pretreatment methods

    Long-Term Potentiation Enhances Neuronal Differentiation in the Chronic Hypoperfusion Model of Rats

    No full text
    Several reports have shown that long-term potentiation (LTP) per se effectively enhances neurogenesis in the hippocampus of intact animals. If LTP can enhance neurogenesis in chronic hypoperfusion, this approach could potentially become a new therapeutic strategy for the restoration of cognitive function and for prevention from deterioration of mild cognitive impairment (MCI). Using an in vivo LTP model of rats, we examined whether LTP per se can enhance neurogenesis in hypoperfusion rats that underwent permanent bilateral common carotid artery occlusion (permanent 2-vessel occlusion, P2VO). High frequency stimulation (HFS) in the subacute phase after P2VO enhanced hippocampal cell proliferation and neurogenesis. However, most enhanced cell proliferation and neurogenesis was seen in the hypoperfusion rats that received HFS and for which LTP could finally be induced. In contrast, the same effect was not seen in the LTP induction in the chronic phase. The present findings, which reveal that most enhanced neurogenesis was seen in hypoperfusion rats for which LTP could be finally induced, could explain the ability of LTP-like activities such as learning paradigms and environmental stimuli to increase the rate of neurogenesis in the hippocampus even under hypoperfusion conditions. Moreover, the present findings, which reveal that LTP induction in the chronic phase after P2VO could not effectively enhance neurogenesis in the hypoperfusion rats, could indicate that patients with MCI and even middle-aged healthy control individuals should start LTP-like activities as early as possible and continue with these activities to prevent age-related deterioration of hippocampal function

    Electrical Stimulation Enhances Migratory Ability of Transplanted Bone Marrow Stromal Cells in a Rodent Ischemic Stroke Model

    Get PDF
    Background/Aims: Bone marrow stromal cells (BMSCs) transplantation is an important strategy for the treatment of ischemic stroke. Currently, there are no effective methods to guide BMSCs toward the targeted site. In this study, we investigated the effect of electrical stimulation on BMSCs migration in an ischemic model of rats. Methods: Adult male Wistar rats weighing 200 to 250 g received right middle cerebral artery occlusion (MCAO) for 90 minutes. BMSCs (2.5×105 cells/ 4 µl PBS) were stereotaxically injected into the left corpus callosum at 1 day after MCAO. After BMSCs injection, a plate electrode with a diameter of 3 mm connected to an implantable electrical stimulator was placed on the right frontal epidural space and a counter electrode was placed in the extra-cranial space. Electrical stimulation at preset current (100 µA) and frequency (100 Hz) was performed for two weeks. Behavioral tests were performed at 1, 4, 8, and 15 days after MCAO using the modified Neurological Severity Score (mNSS) and cylinder test. Rats were euthanized at 15 days after MCAO for evaluation of infarction area and the migration distance and area of BMSCs found in the brain tissue. After evaluating cell migration, we proceeded to explore the mechanisms guiding these observations. MCAO rats without BMSCs transplantation were stimulated with same current and frequency. At 1 and 2 weeks after MCAO, rats were euthanized to evaluate stromal cell-derived factor 1 alpha (SDF-1α) level of brain tissues in the bilateral cortex and striatum. Results: Behavioral tests at 4, 8, and 15 days after MCAO revealed that stimulation group displayed significant amelioration in mNSS and cylinder test compared to control group (p<0.05). Similarly, the infarction areas of stroke rats in stimulation group were significantly decreased compared to control group (p<0.05). Migration distance and area of transplanted BMSCs were significantly longer and wider respectively in stimulation group. An increased concentration gradient of SDF-1α in stimulation group accompanied this enhanced migration of transplanted cells. Conclusions: These results suggest that electrical stimulation enhances migratory ability of transplanted BMSCs in ischemic stroke model of rats. If we can direct the implanted BMSCs to the site of interest, it may lead to a greater therapeutic effect
    corecore